Consider a one-dimensional quantum system described by the time-dependent Schrödinger equation.
\[
i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left( -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right) \psi(x,t)
\]
Time evolution of a wave packet moving in free space. A Gaussian wave packet is defined as:
$$\psi(x, t=0) = A \cdot e^{-\frac{(x - x_0)^2}{2 \sigma^2}} \cdot e^{i k_0 x}$$
The energy of the wave packet is defined as:
$$E = \frac{\hbar^2 k_0^2}{2m} + \frac{\hbar^2}{2m \sigma^2}$$
Analyze Time evolution of the wave packet by Crank-Nicolson Method