Responsive Navbar with Google Search
☰ Menu
Home
Python
LaTeX
GNUPlot
Arduino
Feedback
Contact Us
Mathematical Representations: Matrices
Mathematical Representations
Symbols and Special Characters
Mathematical Functions
Mathematical Equations
Calculus
Matrices
Matrices: Program 1
\documentclass{article} \usepackage{amsmath} \usepackage{bm} % For bold vectors and matrices \usepackage{amssymb} \title{Matrix} \author{} \date{} \begin{document} \maketitle \section*{Matrix} \[ \text{Matrix Multiplication:} \quad \mathbf{A} \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \] \[ \text{Determinant of a 2x2 Matrix:} \quad \text{det}(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \] \[ \text{Inverse of a 2x2 Matrix:} \quad \mathbf{A}^{-1} = \frac{1}{\text{det}(\mathbf{A})} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} \] \[ \text{Eigenvalue Equation:} \quad \mathbf{A} \bm{v} = \lambda \bm{v} \] where $\lambda$ is the eigenvalue and $\bm{v}$ is the corresponding eigenvector. \[ \text{Diagonalization:} \quad \mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1} \] where $\mathbf{D}$ is a diagonal matrix, and $\mathbf{P}$ is the matrix of eigenvectors. \[ \text{Pauli Matrices:} \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] \[ \text{Heisenberg Uncertainty Principle (Matrix Form):} \quad \mathbf{X} \mathbf{P} - \mathbf{P} \mathbf{X} = i \hbar \mathbf{I} \] where $\mathbf{X}$ and $\mathbf{P}$ are position and momentum operators, and $\mathbf{I}$ is the identity matrix. \[ \text{Rotation Matrix in 3D:} \quad \mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ \text{Lorentz Transformation Matrix (Special Relativity):} \quad \mathbf{\Lambda} = \begin{pmatrix} \gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \] \end{document}
Run Code
Output 1