Responsive Navbar with Google Search
☰ Menu
Home
Python
LaTeX
GNUPlot
Arduino
Feedback
Contact Us
Mathematical Representations: Calculus
Mathematical Representations
Symbols and Special Characters
Mathematical Functions
Mathematical Equations
Calculus
Matrices
Calculus: Program 1
\documentclass{article} \usepackage{amsmath} \begin{document} \title{Integration and Differential Equations in Physics} \author{} \date{} \maketitle \section*{Integral Equations} \begin{enumerate} \item \textbf{Indefinite Integral:} \[ \int x^2 \, dx = \frac{x^3}{3} + C \] \item \textbf{Definite Integral:} \[ \int_0^1 e^x \, dx = e - 1 \] \item \textbf{Integration by Parts:} \[ \int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C \] \item \textbf{Trigonometric Integral:} \[ \int \sin(x) \, dx = -\cos(x) + C \] \item \textbf{Exponential Integral:} \[ \int e^{2x} \, dx = \frac{e^{2x}}{2} + C \] \item \textbf{Improper Integral:} \[ \int_0^{\infty} \frac{1}{x^2+1} \, dx = \frac{\pi}{2} \] \item \textbf{Surface Integral:} \[ \iint_S \mathbf{F} \cdot d\mathbf{S} \] \item \textbf{Volume Integral:} \[ \iiint_V f(x, y, z) \, dV \] \item \textbf{Line Integral:} \[ \int_C \mathbf{F} \cdot d\mathbf{r} \] \item \textbf{Gauss's Theorem:} \[ \oint_S \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0} \] \end{enumerate} \section*{Ordinary Differential Equations} \begin{enumerate} \item \textbf{First-Order ODE:} \[ \frac{dy}{dx} = x^2 + y \] \item \textbf{Second-Order ODE:} \[ \frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + 2y = 0 \] \item \textbf{Damped Harmonic Oscillator:} \[ m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0 \] \item \textbf{Newton’s Second Law:} \[ F = m \frac{d^2x}{dt^2} \] \item \textbf{Simple Harmonic Motion:} \[ \frac{d^2 x}{dt^2} + \omega^2 x = 0 \] \item \textbf{RL Circuit:} \[ L \frac{dI}{dt} + RI = V(t) \] \end{enumerate} \section*{Partial Differential Equations} \begin{enumerate} \item \textbf{Wave Equation:} \[ \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \] \item \textbf{Heat Equation:} \[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \] \item \textbf{Laplace's Equation:} \[ \nabla^2 \phi = 0 \] \item \textbf{Poisson's Equation:} \[ \nabla^2 \phi = \rho \] \item \textbf{Schrödinger Equation:} \[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi \] \end{enumerate} \end{document}
Run Code
Output 1
Calculus: Program 2
\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \title{Equations in Physics} \author{} \date{} \begin{document} \maketitle \section*{Physics Equations} \begin{enumerate} % Algebraic Equations \item \textbf{Lorentz Force Law:} \begin{equation} \mathbf{F} = q (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \end{equation} \item \textbf{Maxwell’s Equations (Gauss’s Law):} \begin{equation} \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \end{equation} \item \textbf{Maxwell’s Equations (Faraday’s Law):} \begin{equation} \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \end{equation} \item \textbf{General Relativity (Einstein Field Equation):} \begin{equation} R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \end{equation} \item \textbf{Energy-Mass Equivalence:} \begin{equation} E = mc^2 \end{equation} % Vector and Integral Equations \item \textbf{Stokes' Theorem:} \begin{equation} \int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_C \mathbf{F} \cdot d\mathbf{r} \end{equation} \item \textbf{Divergence Theorem:} \begin{equation} \iiint_V (\nabla \cdot \mathbf{F}) \, dV = \oint_S \mathbf{F} \cdot d\mathbf{A} \end{equation} % Quantum Mechanics \item \textbf{Time-Dependent Schrödinger Equation:} \begin{equation} i \hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V(x) \psi \end{equation} \item \textbf{Commutator Relation:} \begin{equation} [\hat{x}, \hat{p}] = i \hbar \end{equation} \item \textbf{Expectation Value in Quantum Mechanics:} \begin{equation} \langle \hat{O} \rangle = \int \psi^* \hat{O} \psi \, dx \end{equation} % Classical Mechanics \item \textbf{Euler-Lagrange Equation:} \begin{equation} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \end{equation} \item \textbf{Hamilton’s Equations:} \begin{equation} \dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \end{equation} % Electromagnetism \item \textbf{Ampère's Law (Maxwell-Ampère Law):} \begin{equation} \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{equation} % Fluid Dynamics \item \textbf{Continuity Equation (Fluid Dynamics):} \begin{equation} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \end{equation} \item \textbf{Bernoulli's Equation:} \begin{equation} P + \frac{1}{2} \rho v^2 + \rho gh = \text{constant} \end{equation} % Cosmology and General Relativity \item \textbf{Friedmann Equation:} \begin{equation} \left( \frac{\dot{a}}{a} \right)^2 = \frac{8 \pi G}{3} \rho - \frac{k}{a^2} + \frac{\Lambda}{3} \end{equation} \end{enumerate} \end{document}
Run Code
Output 2
Calculus: Program 3
\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{bm} % For bold vectors \usepackage{tensor} % For tensor notation \title{Tensor and Physics Equations} \author{} \date{} \begin{document} \maketitle \section*{Tensor and Advanced Physics Equations} \begin{enumerate} % Tensor Equations \item \textbf{Stress-Energy Tensor (General Relativity):} \begin{equation} T^{\mu \nu} = (\rho + p) u^\mu u^\nu + p g^{\mu \nu} \end{equation} \item \textbf{Einstein Field Equation (General Relativity):} \begin{equation} R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R = \frac{8 \pi G}{c^4} T_{\mu \nu} \end{equation} \item \textbf{Riemann Curvature Tensor:} \begin{equation} R^\rho_{\sigma \mu \nu} = \partial_\mu \Gamma^\rho_{\nu \sigma} - \partial_\nu \Gamma^\rho_{\mu \sigma} + \Gamma^\rho_{\mu \lambda} \Gamma^\lambda_{\nu \sigma} - \Gamma^\rho_{\nu \lambda} \Gamma^\lambda_{\mu \sigma} \end{equation} \item \textbf{Ricci Tensor:} \begin{equation} R_{\mu \nu} = R^\lambda_{\mu \lambda \nu} \end{equation} \item \textbf{Ricci Scalar:} \begin{equation} R = g^{\mu \nu} R_{\mu \nu} \end{equation} \item \textbf{Christoffel Symbols of the Second Kind:} \begin{equation} \Gamma^\lambda_{\mu \nu} = \frac{1}{2} g^{\lambda \sigma} \left( \partial_\mu g_{\sigma \nu} + \partial_\nu g_{\sigma \mu} - \partial_\sigma g_{\mu \nu} \right) \end{equation} % Quantum Field Theory \item \textbf{Dirac Equation (Relativistic Quantum Mechanics):} \begin{equation} (i \gamma^\mu \partial_\mu - m) \psi = 0 \end{equation} \item \textbf{Yang-Mills Field Strength Tensor:} \begin{equation} F^a_{\mu \nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \end{equation} % Electromagnetism \item \textbf{Electromagnetic Field Tensor:} \begin{equation} F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \end{equation} \item \textbf{Maxwell's Equations in Tensor Form:} \begin{equation} \partial_\mu F^{\mu \nu} = \mu_0 J^\nu \end{equation} % Fluid Dynamics \item \textbf{Navier-Stokes Equation (Fluid Dynamics):} \begin{equation} \rho \left( \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = - \nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} \end{equation} % Statistical Mechanics \item \textbf{Partition Function (Statistical Mechanics):} \begin{equation} Z = \sum_i e^{-\beta E_i} \end{equation} \item \textbf{Boltzmann Distribution:} \begin{equation} f(E) = \frac{1}{Z} e^{-\beta E} \end{equation} % Cosmology \item \textbf{Robertson-Walker Metric (Cosmology):} \begin{equation} ds^2 = -c^2 dt^2 + a(t)^2 \left( \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right) \end{equation} \item \textbf{Friedmann Equation (Cosmology):} \begin{equation} \left( \frac{\dot{a}}{a} \right)^2 = \frac{8 \pi G}{3} \rho - \frac{k}{a^2} + \frac{\Lambda}{3} \end{equation} % Quantum Electrodynamics \item \textbf{QED Interaction Lagrangian:} \begin{equation} \mathcal{L} = \bar{\psi}(i \gamma^\mu D_\mu - m) \psi - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \end{equation} % Thermodynamics \item \textbf{Clausius-Clapeyron Equation (Phase Transitions):} \begin{equation} \frac{dP}{dT} = \frac{L}{T \Delta V} \end{equation} % Generalized Force in Lagrangian Mechanics \item \textbf{Lagrange's Equation of Motion:} \begin{equation} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i \end{equation} % Nonlinear Dynamics \item \textbf{Lorenz System (Nonlinear Dynamics):} \begin{equation} \frac{dx}{dt} = \sigma (y - x), \quad \frac{dy}{dt} = x(\rho - z) - y, \quad \frac{dz}{dt} = xy - \beta z \end{equation} % Advanced Electromagnetism \item \textbf{Liénard-Wiechert Potentials (Electrodynamics):} \begin{equation} \mathbf{A}(\mathbf{r}, t) = \frac{\mu_0}{4 \pi} \int \frac{J(\mathbf{r}', t_r)}{|\mathbf{r} - \mathbf{r}'|} d^3r' \end{equation} \end{enumerate} \end{document}
Run Code
Output 3