Responsive Navbar with Google Search
User Defined Function Plot: Piecewise Function Plot

Piecewise Function Plot: Program 1

Piecewise Function

Plot a piecewise function where:

\[ f(x) = \begin{cases} x^2 & \text{if } x > 0 \\ x & \text{otherwise} \end{cases} \]

Output 1

Unary Operators

Symbol Example Explanation
- \(-a\) unary minus
+ \(+a\) unary plus (no-operation)
~ \(~a\) one's complement
! \(!a\) logical negation
! \(a!\) factorial
$ \($3\) call arg/column during 'using' manipulation
\(|\) \(|A|\) cardinality of array \( A \)

Binary Operators

Symbol Example Explanation
** a**b exponentiation
* a*b multiplication
/ a/b division
% a%b modulo
+ a+b addition
- a-b subtraction
== a==b equality
!= a!=b inequality
< a less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
<< 0xff<<1 left shift unsigned
>> 0xff>>1 right shift unsigned
& a&b bitwise AND
^ a^b bitwise exclusive OR
| a|b bitwise inclusive OR
&& a&&b logical AND
|| a||b logical OR
= a=b assignment
, (a,b) serial evaluation
. A.B string concatenation
eq A eq B string equality
ne A ne B string inequality

Ternary Operator

Symbol Example Explanation
$$\text{?}:\text{}$$
$$\text{a ? b : c}$$
$$\text{ternary operation}$$

Piecewise Function Plot: Program 2

Plot a piecewise function where:

\[ f(x) = \begin{cases} 5x & \text{if } x < -3 \\ -5x & \text{if } x > 3 \\ x & \text{otherwise} \end{cases} \]

Output 2

Piecewise Function Plot: Program 3

Plot a piecewise function where:

\[ f(x) = \begin{cases} x^2 & \text{if } x \geq 2 \\ x & \text{if } -1 \leq x < 2 \\ -1 & \text{otherwise} \end{cases} \]

Output 3

Piecewise Function Plot: Program 4

Plot a piecewise function where:

\[ f(x) = \begin{cases} \frac{x^2}{x} for \quad x \neq 0 \\ undefined (NaN) \quad at \quad x = 0 \\ \end{cases} \]

Output 4

Piecewise Function Plot: Program 5

Plot the following piecewise function:

\[ f(x) = \begin{cases} 0 & \text{if } x < -1 \text{ or } x > 1 \\ x & \text{if } -1 \leq x \leq 1 \end{cases} \]

Output 5

Piecewise Function Plot: Program 6

Three functions are defined in the given range as follows:

\( f(x) = 1.45x^3 - 6\sqrt{x}, \quad x \geq 2 \)
\( g(x) = \sin^2(x), \quad -1 \leq x < 2 \)
\( h(x) = |x| e^x, \quad x < -1 \)

Plot the three functions using GNUPLOT.

Output 6

Piecewise Function Plot: Program 7

 

Plot the following functions for \(0 \le x \le \pi\) on the same graph using GNUPLOT. Set 1000 samples. Mark each curve with different line style and line widths.

\(f_1(x) = \sin^2(\sqrt{x})\)

\(f_2(x) = e^{-x/2} \cos(2\pi x)\)

\(f_3(x) = 12.34x^{5/3}\)

Output 7