Responsive Navbar with Google Search
Plot of 2D Graph: Function Plot

Function Plot: Program 1

Output 1

Math Library Functions

Function Arguments Returns
abs(x) any \(|x|\), absolute value of \( x \); same type
abs(x) complex \(\sqrt{\text{real}(x)^2 + \text{imag}(x)^2}\)
acos(x) any \(\cos^{-1}(x)\) (inverse cosine)
acosh(x) any \(\cosh^{-1}(x)\) (inverse hyperbolic cosine)
airy(x) any Airy function \( \text{Ai}(x) \)
arg(x) complex the phase of \( x \)
asin(x) any \(\sin^{-1}(x)\) (inverse sine)
asinh(x) any \(\sinh^{-1}(x)\) (inverse hyperbolic sine)
atan(x) any \(\tan^{-1}(x)\) (inverse tangent)
atan2(y, x) int or real \(\tan^{-1}(y/x)\) (inverse tangent)
atanh(x) any \(\tanh^{-1}(x)\) (inverse hyperbolic tangent)
EllipticK(k) real \( k \in (-1:1) \) \(K(k)\), complete elliptic integral of the first kind
EllipticE(k) real \( k \in [-1:1] \) \(E(k)\), complete elliptic integral of the second kind
EllipticPi(n, k) real \( n < 1 \), real \( k \in (-1:1) \) \(\Pi(n, k)\), complete elliptic integral of the third kind
besj0(x) int or real \(J_0\), Bessel function of \( x \) in radians
besj1(x) int or real \(J_1\), Bessel function of \( x \) in radians
besjn(n, x) int, real \(J_n\), Bessel function of \( x \) in radians
besy0(x) int or real \(Y_0\), Bessel function of \( x \) in radians
besy1(x) int or real \(Y_1\), Bessel function of \( x \) in radians
besyn(n, x) int, real \(Y_n\), Bessel function of \( x \) in radians
besi0(x) real Modified Bessel function of order \( 0 \), \( x \) in radians
besi1(x) real Modified Bessel function of order \( 1 \), \( x \) in radians
besin(n, x) int, real Modified Bessel function of order \( n \), \( x \) in radians
ceil(x) any \(\lceil x \rceil\), smallest integer not less than \( x \) (real part)
cos(x) any \(\cos(x)\), cosine of \( x \)
cosh(x) any \(\cosh(x)\), hyperbolic cosine of \( x \)
erf(x) any \(\text{erf(real}(x))\), error function of \(\text{real}(x)\)
erfc(x) any \(\text{erfc(real}(x))\), \(1.0 - \) error function of \(\text{real}(x)\)
exp(x) any \(e^x\), exponential function of \( x \)
expint(n, x) int \( n \geq 0 \), real \( x \geq 0 \) \(E_n(x) = \int_1^{\infty} t^{-n} e^{-xt} \, dt\), exponential integral of \( x \)
floor(x) any \(\lfloor x \rfloor\), largest integer not greater than \( x \) (real part)
gamma(x) any \(\text{gamma(real}(x))\), gamma function of \(\text{real}(x)\)
ibeta(p, q, x) any \(\text{ibeta}(p, q, x)\), beta function of \( (p, q, x) \)
inverf(x) any inverse error function of \(\text{real}(x)\)
igamma(a, x) any \(\text{igamma(real}(a, x))\), igamma function of \(\text{real}(a, x)\)
imag(x) complex imaginary part of \( x \) as a real number
invnorm(x) any inverse normal distribution function of \(\text{real}(x)\)
int(x) real integer part of \( x \), truncated toward zero
lambertw(x) real Lambert \( W \) function
lgamma(x) any \(\text{lgamma(real}(x))\), lgamma function of \(\text{real}(x)\)
log(x) any \(\log_e x\), natural logarithm (base \( e \)) of \( x \)
log10(x) any \(\log_{10} x\), logarithm (base 10) of \( x \)
norm(x) any normal distribution (Gaussian) function of \(\text{real}(x)\)
rand(x) int pseudo random number in the open interval \((0:1)\)
real(x) any real part of \( x \)
sgn(x) any \(1\) if \( x > 0 \), \(-1\) if \( x < 0 \), \(0\) if \( x = 0 \). \(\text{imag}(x)\) ignored
sin(x) any \(\sin x\), sine of \( x \)
sinh(x) any \(\sinh x\), hyperbolic sine of \( x \) in radians
sqrt(x) any \(\sqrt{x}\), square root of \( x \)
tan(x) any \(\tan x\), tangent of \( x \)
tanh(x) any \(\tanh x\), hyperbolic tangent of \( x \) in radians

Function Plot: Program 2

Output 2

Function Plot: Program 3

Output 3

Function Plot: Program 4

Output 4

Function Plot: Program 5

Output 5

Function Plot: Program 6

Output 6

Function Plot: Program 7

Output 7

Function Plot: Program 8

Output 8

Function Plot: Program 9

Output 9

Function Plot: Program 10

Output 10